Mechanical stimuli modulate lateral root organogenesis.
نویسندگان
چکیده
Unlike mammals, whose development is limited to a short temporal window, plants produce organs de novo throughout their lifetime in order to adapt their architecture to the prevailing environmental conditions. The production of lateral roots represents one example of such postembryonic organogenesis. An endogenous developmental program likely imposes an ordered arrangement on the position of new lateral roots. However, environmental stimuli such as nutrient levels also affect the patterning of lateral root production. In addition, we have found that mechanical forces can act as one of the triggers that entrain lateral root production to the environment of the Arabidopsis (Arabidopsis thaliana) plant. We observed that physical bending of the root recruited new lateral root formation to the convex side of the resultant bend. Transient bending of 20 s was sufficient to elicit this developmental program. Such bending triggered a Ca(2+) transient within the pericycle, and blocking this change in Ca(2+) also blocked recruitment of new lateral root production to the curved region of the root. The initial establishment of the mechanically induced lateral root primordium was independent of an auxin supply from the shoot and was not disrupted by mutants in a suite of auxin transporters and receptor/response elements. These results suggest that Ca(2+) may be acting to translate the mechanical forces inherent in growth to a developmental response in roots.
منابع مشابه
Genetic approach towards the identification of auxin-cytokinin crosstalk components involved in root development.
Phytohormones are important plant growth regulators that control many developmental processes, such as cell division, cell differentiation, organogenesis and morphogenesis. They regulate a multitude of apparently unrelated physiological processes, often with overlapping roles, and they mutually modulate their effects. These features imply important synergistic and antagonistic interactions betw...
متن کاملSpatiotemporal regulation of lateral root organogenesis in Arabidopsis by cytokinin.
The architecture of a plant's root system, established postembryonically, results from both coordinated root growth and lateral root branching. The plant hormones auxin and cytokinin are central endogenous signaling molecules that regulate lateral root organogenesis positively and negatively, respectively. Tight control and mutual balance of their antagonistic activities are particularly import...
متن کاملReal-time Analysis of Lateral Root Organogenesis in Arabidopsis.
Plants maintain capacity to form new organs such as leaves, flowers, lateral shoots and roots throughout their postembryonic lifetime. Lateral roots (LRs) originate from a few pericycle cells that acquire attributes of founder cells (FCs), undergo series of anticlinal divisions, and give rise to a few short initial cells. After initiation, coordinated cell division and differentiation occur, gi...
متن کاملDiffering requirements for flavonoids during the formation of lateral roots, nodules and root knot nematode galls in Medicago truncatula.
* In this study, we tested whether the organogenesis of symbiotic root nodules, lateral roots and root galls induced by parasitic root knot nematodes (Meloidogyne javanica) was regulated by the presence of flavonoids in the roots of Medicago truncatula. Flavonoids accumulate in all three types of root organ, and have been hypothesized previously to be required for secondary root organogenesis b...
متن کاملBeyond the barrier: communication in the root through the endodermis.
The root endodermis is characterized by the Casparian strip and by the suberin lamellae, two hydrophobic barriers that restrict the free diffusion of molecules between the inner cell layers of the root and the outer environment. The presence of these barriers and the position of the endodermis between the inner and outer parts of the root require that communication between these two domains act...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 151 4 شماره
صفحات -
تاریخ انتشار 2009